

Product: Flexi-coil 5500 Air Hoe Drill Service Repair Manual

Full Download: <https://www.arepairmanual.com/downloads/flexi-coil-5500-air-hoe-drill-service-repair-manual/>

5500 Air Hoe Drill

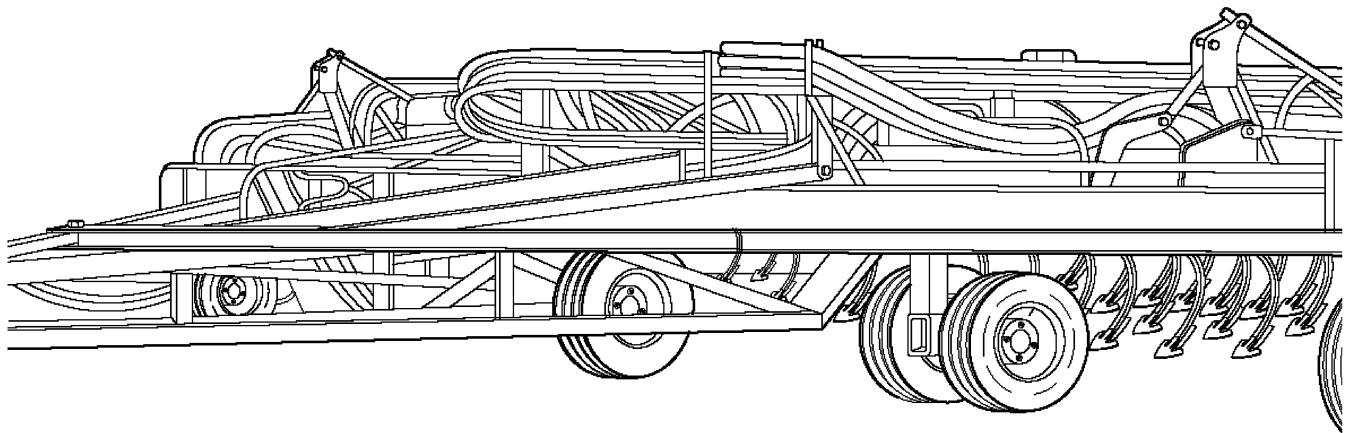
Repair Manual

Sample of manual. Download All 272 pages at:

<https://www.arepairmanual.com/downloads/flexi-coil-5500-air-hoe-drill-service-repair-manual/>

87478703

10/08


Replaces 87657935

Product: Flexi-coil 5500 Air Hoe Drill Service Repair Manual
Full Download: <https://www.arepairmanual.com/downloads/flexi-coil-5500-air-hoe-drill-service-repair-manual/>
© 2008 CNH America LLC

Sample of manual. Download All 272 pages at:
<https://www.arepairmanual.com/downloads/flexi-coil-5500-air-hoe-drill-service-repair-manual/>

flexi[®]coil

REPAIR MANUAL

5500 [- Y8S003904]
5500 [Y9S003001 -]

Contents

INTRODUCTION

DISTRIBUTION SYSTEMS A

 LIGHTING SYSTEM A.40.A

 FAULT CODES A.50.A

TRAVELLING D

 FRONT AXLE D.10.A

 WHEELS AND TRACKS Wheels D.50.C

BODY AND STRUCTURE E

 FRAME Primary frame E.10.B

FRAME POSITIONING F

 TRAVELLING Folding F.10.E

 FRAME LEVELLING F.30.A

FIELD PROCESSING L

 SEEDING Air system L.10.E

 SOIL PREPARATION Tillage L.50.B

 SOIL PREPARATION Seedbed finishing L.50.C

 SOIL PREPARATION Planting L.50.D

INTRODUCTION

Contents

INTRODUCTION

Foreword	3
Legal advice	7
Decals	8
Torque	12
Basic instructions	14
Dimension	16
Weight	18
Product identification	21
Product identification	22

Foreword

Technical Information and ICE

This information in this manual has been structured using the Integrated Coding Environment (ICE). ICE is the way in which technical information is created, stored and retrieved in the Technical Information Database.

ICE coding classifies all information in three ways.

The first category is the Location, the second category is the Information Type and the third category is the Product:

- LOCATION - is the component, or function on the machine, that the piece of technical information is going to describe e.g. Fuel tank.
- INFORMATION TYPE - is the piece of technical information that has been written for a particular component or function on the machine. e.g., Capacity would be a type of Technical Data that would describe the amount of fuel held by the Fuel tank.
- PRODUCT - is the model that the piece of technical information is written for. e.g., The Flexi-Coil 5500 Air Drill.

Every piece of technical information will have those 3 categories attached to it. You will be able to use any combination of those categories to find the right piece of technical information you need to resolve that customers concern on his machine.

That information could be:

- the description of how to remove the cylinder head
- a table of specifications for a hydraulic pump
- a fault code
- a troubleshooting table
- a special tool

How to Use this Manual

This manual is divided into Sections. Each Section is then divided into Chapters. Contents pages are included at the beginning of the manual, then inside every Section and inside every Chapter. An alphabetical Index is included at the end of a Chapter. Page number references are included for every piece of technical information listed in the Chapter Contents or Chapter Index.

Each Chapter is divided into four Information types:

- Technical Data (specifications) for all the mechanical, electrical, or hydraulic devices, components, and assemblies.
- Functional Data (how it works) for all the mechanical, electrical, or hydraulic devices, components, and assemblies.
- Diagnostic Data (fault codes, electrical and hydraulic troubleshooting) for all the mechanical, electrical, or hydraulic devices, components, and assemblies.
- Service data (remove, disassemble, assemble, install) for all the mechanical, electrical, or hydraulic devices, components, and assemblies.

Sections

Sections are grouped according to the main functions or systems on the machine. Each Section is identified by a letter A, B, C etc. The number of Sections included in the manual will depend on the type and function of the machine that the manual is written for. Each Section has a Contents page listed in alphabetic/numeric order. This table illustrates which Sections could be included in a manual for a particular product.

INTRODUCTION

SECTION		A - Distribution Systems									
		B - Power Production									
		C - Power Train									
		D - Travelling									
		E - Body and Structure									
		F - Frame Positioning									
		G - Tool Positioning									
		H - Working Arm									
		J - Tools and Couplers									
		K - Crop Processing									
		L - Field Processing									
PRODUCT											
Tractors		X	X	X	X	X	X	X	X		
Vehicles with working arms: backhoes, excavators, skid steers,		X	X	X	X	X	X	X	X		
Combines, forage harvesters, balers, ...		X	X	X	X	X	X		X	X	
Seeding, planting, floating, spraying equipment, ...		X	X	X	X	X	X	X		X	
Mounted equipment and tools,					X	X	X	X			

SECTION	LETTER	DESCRIPTION
DISTRIBUTION SYSTEMS	A	This Section covers the main systems that interact with most of the functions of the product. It includes the central parts of the hydraulic, electrical, electronic, pneumatic, lighting and grease lubrication systems. The components that are dedicated to a specific function are listed in the Chapter where all the technical information for that function is included.
POWER PRODUCTION	B	This Section covers all the functions related to the production of power to move the machine and to drive various devices. In the case of a pulled-type machine, this Section covers the power take-off function where power is provided from the towing machine.
POWER TRAIN	C	This Section covers all the functions related to the transmission of power from the engine to the axles and to internal or external devices. This Section also covers the power take-off function where power is provided to the pull-type machine and additional Process Drive functions.
TRAVELLING	D	This Section covers all the functions related to moving the machine, including tracks, wheels, steering and braking. It covers all the axles; both driven axles and non-driven axles, including any axle suspension.
BODY AND STRUCTURE	E	This Section covers all the main functions and systems related to the structure and the body of the machine, including the frame, the shields, the operators cab and the platform. The functions related to the positioning of the machine frame are included in Section F, Frame Positioning.
FRAME POSITIONING	F	This Section covers all the main functions and systems related to positioning of the machine frame or to positioning the attachment on the supporting machine frame.
TOOL POSITIONING	G	This Section covers all the functions related to the final and/or automatic positioning of the tool once the tool is positioned using the Working Arm or the machine frame.
WORKING ARM	H	This Section covers all the functions related to the articulated or single arms mounted on the front or rear of the machine. A working arm can have various tools and quick couplers mounted on to it. The tools and quick couplers are included in Section J, Tools and Couplers.

INTRODUCTION

SECTION	LETTER	DESCRIPTION
TOOLS AND COUPLERS	J	This Section covers all the functions related to the specific tools that mount on the front, rear or beside the machine. The tools described here can be mounted with the positioning systems (lifting, side shift, swing) listed in Section G Tool Positioning. This Section covers all the quick coupling systems, located between the tool and the positioning system. The tools used for field preparation, soil preparation and treatment, planting and seeding are included.
CROP PROCESSING	K	This Section covers all the functions related to crop processing. Examples of crop processing include threshing, baling, windrowing, cutting and conditioning.
FIELD PROCESSING	L	This Section covers all the field processing functions of the machine. Examples of field process include seeding, fertilizer application, seedbed preparation and chemical application.

This manual contains these sections.

Contents

INTRODUCTION	A
DISTRIBUTION SYSTEMS	D
TRAVELLING	E
BODY AND STRUCTURE	F
FRAME POSITIONING	L
FIELD PROCESSING	

Your manual contains these Sections. The contents of each Section are explained over the following pages.

Section Contents

SECTION A, DISTRIBUTION SYSTEMS

SECTION D, TRAVELLING

SECTION E, BODY AND STRUCTURE

SECTION F, FRAME POSITIONING

SECTION L, FIELD PROCESSING

Chapters

Each Chapter is identified by a letter and number combination e.g. Seeding L.10.B. The first letter is identical to the Section letter i.e. Chapter L.10.B is inside Section L, Field Processing. The Chapter Contents lists all the "Technical Data" (specifications), "Functional Data" (how it works), "Service Data" (remove, install, adjust, etc.,) and "Diagnostic Data" (fault codes and troubleshooting) that have been written in that Chapter for that function or system on the machine.

The Chapter Index lists in alphabetical order all the types of information (called Information Units) that have been written in that Chapter for that function or system on the machine.

Information Units and Information Search

Each chapter is composed of information units. The ICE coding is not included in the Information Unit title.

Page Header and Footer

The page header will contain the following references:

- Section and Chapter description

The page footer will contain the following references.

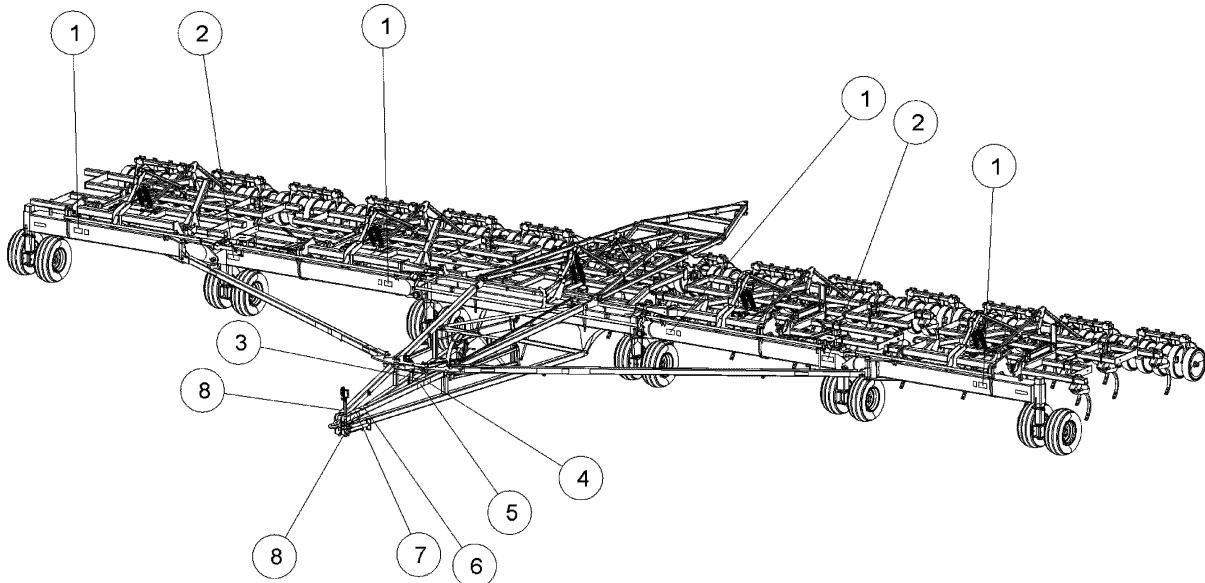
INTRODUCTION

Printed references found at the base of each page then equate to

- The publication number for that Manual, Section, or Chapter
- Revision number of the publication
- Publication date
- Chapter reference (n/a)
- Page number

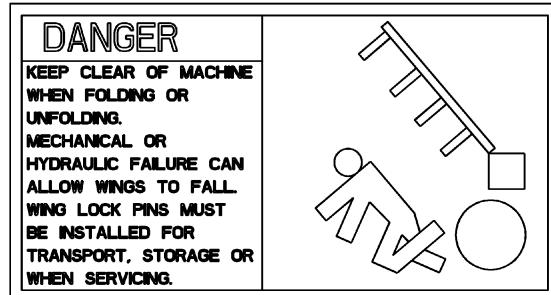
Legal advice

All repair and maintenance works listed in this manual must be carried out only by qualified dealership personnel, strictly complying with the instructions given; and using, whenever possible, the special tools.

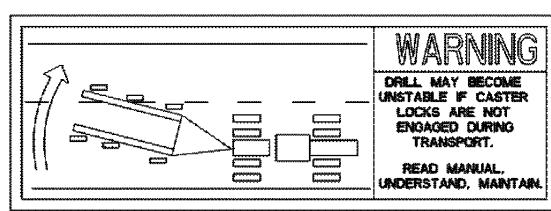

Anyone who carries out the above operations without complying with the procedures shall be responsible for the subsequent damages.

The manufacturer and all the organizations of its distribution chain, including - without limitation - national, regional, or local dealers, reject any responsibility for damages due to the anomalous behavior of parts and/or components not approved by the manufacturer himself, including those used for the servicing or repair of the product manufactured or marketed by the manufacturer. In any case, no warranty is given or attributed on the product manufactured or marketed by the manufacturer in case of damages due to an anomalous behavior or parts and/or components not approved by the manufacturer.

The information in this manual is up-to-date at the date of the publication. It is the policy of the manufacturer for continuous improvement. Some information could not be updated due to modifications of a technical or commercial type, as well as to suit the law regulations of different countries.


In case of disagreement, refer to your Sales and Service Networks.

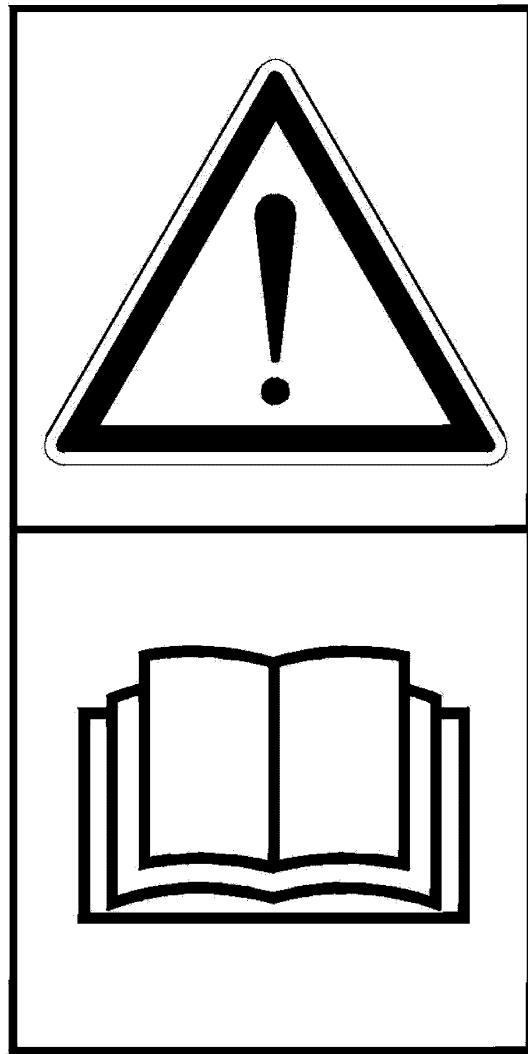
Decals


206240C 1
Decal Locations

Danger - Stay Clear of Wings; Wing Lock Pins (1).

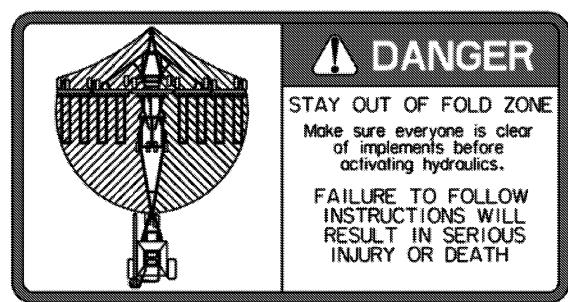
0687503980 2

Warning - Caster Locks not Engaged (2).



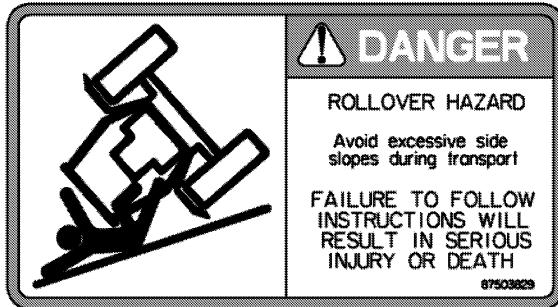
0687503996 3

INTRODUCTION



Read Your Operator's Manual (3).

06256147A1 4


Danger - Stay Clear of Fold Zone (4).

0687503802 5

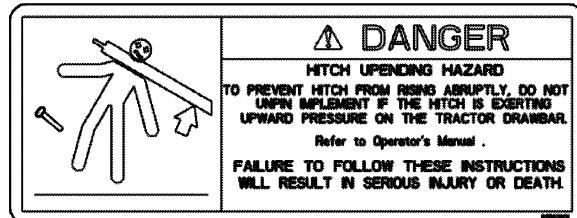
INTRODUCTION

Danger - Rollover Hazard (5).

0687503629 6

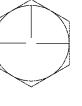
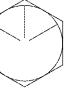
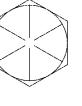
Warning - Do Not Ride (6).

06182270A1 7


INTRODUCTION

Caution - Escaping Hydraulic Fluid Hazard (7).

GD50077 8




Danger - Negative Hitch Weight (8).

Torque

BOLT TORQUE INFORMATION

1. Fasteners should be replaced with the same or higher grade fasteners. If higher grade fasteners are used, these should only be tightened to the strength of the original.
2. Make sure the fastener's threads are clean and that thread engagement is started. This will prevent them from failing when being tightened.
3. Tighten plastic insert or crimped steel-type lock nuts to approximately 50 % of the dry torque, applied to the nut, not to the bolt head. Tighten toothed or serrated-type lock nuts to the full torque value.
4. The L9 (Alloy) fasteners torque values are for a bolt, nut, and two washers. When using L9 (Alloy) fasteners, do not use the values in this table for tapped holes.

	GRADE						
	1 or 2	5	5.1	5.2	8	8.2	L9 (Alloy)
SAE Markings for Bolts and Cap Screws							
	2	5			8		L9 (Alloy)
SAE Markings for Hex Nuts							

SIZE	GRADE 2*		GRADE 5, 5.1 or 5.2		GRADE 8 or 8.2		GRADE L9 (Alloy)	
	Dry **	Lubricated **	Dry **	Lubricated **	Dry **	Lubricated **	Head	Nut
1/4 UNF	7.5 Nm 5.5 lb ft	5.7 Nm 4.2 lb ft	10.8 Nm 8 lb ft	8.5 Nm 6.3 lb ft	16.3 Nm 12 lb ft	12.2 Nm 9 lb ft	13.6 Nm 10 lb ft	14.9 Nm 11 lb ft
1/4 UNC	8.5 Nm 6.3 lb ft	6.4 Nm 4.7 lb ft	13.6 Nm 10 lb ft	9.8 Nm 7.2 lb ft	19 Nm 14 lb ft	13.6 Nm 10 lb ft	16.3 Nm 12 lb ft	17.6 Nm 13 lb ft
5/16 UNF	15 Nm 11 lb ft	11 Nm 8 lb ft	23 Nm 17 lb ft	18 Nm 13 lb ft	33 Nm 24 lb ft	24 Nm 18 lb ft	26 Nm 19 lb ft	28 Nm 21 lb ft
5/16 UNC	16 Nm 12 lb ft	12 Nm 9 lb ft	26 Nm 19 lb ft	19 Nm 14 lb ft	37 Nm 27 lb ft	27 Nm 20 lb ft	27 Nm 20 lb ft	31 Nm 23 lb ft
3/8 UNF	27 Nm 20 lb ft	20 Nm 15 lb ft	41 Nm 30 lb ft	31 Nm 23 lb ft	61 Nm 45 lb ft	47 Nm 35 lb ft	41 Nm 30 lb ft	45 Nm 33 lb ft
3/8 UNC	31 Nm 23 lb ft	23 Nm 17 lb ft	47 Nm 35 lb ft	34 Nm 25 lb ft	68 Nm 50 lb ft	47 Nm 35 lb ft	47 Nm 35 lb ft	52 Nm 38 lb ft
7/16 UNF	43 Nm 32 lb ft	33 Nm 24 lb ft	68 Nm 50 lb ft	47 Nm 35 lb ft	95 Nm 70 lb ft	68 Nm 50 lb ft	75 Nm 55 lb ft	81 Nm 60 lb ft
7/16 UNC	49 Nm 36 lb ft	37 Nm 27 lb ft	75 Nm 55 lb ft	54 Nm 40 lb ft	108 Nm 80 lb ft	81 Nm 60 lb ft	81 Nm 60 lb ft	88 Nm 65 lb ft
1/2 UNF	68 Nm 50 lb ft	47 Nm 35 lb ft	102 Nm 75 lb ft	75 Nm 55 lb ft	149 Nm 110 lb ft	108 Nm 80 lb ft	115 Nm 85 lb ft	129 Nm 95 lb ft
1/2 UNC	75 Nm 55 lb ft	54 Nm 40 lb ft	115 Nm 85 lb ft	88 Nm 65 lb ft	163 Nm 120 lb ft	122 Nm 90 lb ft	129 Nm 95 lb ft	142 Nm 105 lb ft
9/16 UNF	95 Nm 70 lb ft	75 Nm 55 lb ft	149 Nm 110 lb ft	108 Nm 80 lb ft	203 Nm 150 lb ft	149 Nm 110 lb ft	163 Nm 120 lb ft	190 Nm 140 lb ft
9/16 UNC	108 Nm 80 lb ft	81 Nm 60 lb ft	163 Nm 120 lb ft	122 Nm 90 lb ft	231 Nm 170 lb ft	176 Nm 130 lb ft	183 Nm 135 lb ft	203 Nm 150 lb ft
5/8 UNF	136 Nm 100 lb ft	102 Nm 75 lb ft	203 Nm 150 lb ft	149 Nm 110 lb ft	285 Nm 210 lb ft	217 Nm 160 lb ft	231 Nm 170 lb ft	251 Nm 185 lb ft
5/8 UNC	149 Nm 110 lb ft	115 Nm 85 lb ft	231 Nm 170 lb ft	176 Nm 130 lb ft	325 Nm 240 lb ft	244 Nm 180 lb ft	258 Nm 190 lb ft	278 Nm 205 lb ft

INTRODUCTION

SIZE	GRADE 2*		GRADE 5, 5.1 or 5.2		GRADE 8 or 8.2		GRADE L9 (Alloy)	
	Dry **	Lubricated **	Dry**	Lubricated **	Dry**	Lubricated **	Head	Nut
3/4 UNF	237 Nm	176 Nm	353 Nm	271 Nm	515 Nm	380 Nm	359 Nm	393 Nm
	175 lb ft	130 lb ft	260 lb ft	200 lb ft	380 lb ft	280 lb ft	265 lb ft	290 lb ft
3/4 UNC	271 Nm	190 Nm	470 Nm	298 Nm	570 Nm	420 Nm	447 Nm	481 Nm
	200 lb ft	140 lb ft	300 lb ft	220 lb ft	420 lb ft	310 lb ft	330 lb ft	355 lb ft
7/8 UNF	231 Nm	170 Nm	583 Nm	434 Nm	814 Nm	610 Nm	644 Nm	685 Nm
	170 lb ft	125 lb ft	430 lb ft	320 lb ft	600 lb ft	450 lb ft	475 lb ft	505 lb ft
7/8 UNC	244 Nm	190 Nm	637 Nm	475 Nm	909 Nm	678 Nm	705 Nm	793 Nm
	180 lb ft	140 lb ft	470 lb ft	350 lb ft	670 lb ft	500 lb ft	520 lb ft	585 lb ft
1 UNF	339 Nm	258 Nm	868 Nm	651 Nm	1234 Nm	922 Nm	746 Nm	1051 Nm
	250 lb ft	190 lb ft	640 lb ft	480 lb ft	910 lb ft	680 lb ft	550 lb ft	775 lb ft
1 UNC	380 Nm	285 Nm	976 Nm	732 Nm	1383 Nm	1031 Nm	949 Nm	1220 Nm
	280 lb ft	210 lb ft	720 lb ft	540 lb ft	1020 lb ft	760 lb ft	700 lb ft	900 lb ft
1-1/8 UNF	475 Nm	366 Nm	1071 Nm	800 Nm	1749 Nm	1315 Nm	1390 Nm	1559 Nm
	350 lb ft	270 lb ft	790 lb ft	590 lb ft	1290 lb ft	970 lb ft	1025 lb ft	1150 lb ft
1-1/8 UNC	542 Nm	407 Nm	1207 Nm	909 Nm	1953 Nm	1464 Nm	1559 Nm	1797 Nm
	400 lb ft	300 lb ft	890 lb ft	670 lb ft	1440 lb ft	1080 lb ft	1150 lb ft	1325 lb ft
1-1/4 UNF	678 Nm	515 Nm	1519 Nm	1139 Nm	2468 Nm	1844 Nm	1898 Nm	2170 Nm
	500 lb ft	380 lb ft	1120 lb ft	840 lb ft	1820 lb ft	1360 lb ft	1400 lb ft	1600 lb ft
1-1/4 UNC	746 Nm	570 Nm	1681 Nm	1261 Nm	2726 Nm	2048 Nm	2170 Nm	2373 Nm
	550 lb ft	420 lb ft	1240 lb ft	930 lb ft	2010 lb ft	1510 lb ft	1600 lb ft	1750 lb ft
1-1/2 UNF	1180 Nm	881 Nm	2644 Nm	1980 Nm	4285 Nm	3214 Nm	3932 Nm	4407 Nm
	870 lb ft	650 lb ft	1951 lb ft	1460 lb ft	3160 lb ft	2370 lb ft	2900 lb ft	3250 lb ft
1-1/2 UNC	1329 Nm	990 Nm	2983 Nm	2224 Nm	4827 Nm	3621 Nm	4475 Nm	4949 Nm
	980 lb ft	730 lb ft	2200 lb ft	1640 lb ft	3560 lb ft	2670 lb ft	3300 lb ft	3650 lb ft

IMPORTANT: DO NOT use these values if a different torque value or tightening procedure is given for a specific application. Torque values listed are for general use only. Check tightness of fasteners periodically. Shear bolts are designed to fail under predetermined loads. Always replace shear bolts with identical grade bolts.

NOTES

- *Grade 2 applies for hex caps (not hex bolts) up to 152 mm (6 in) long. Grade 1 applies for hex cap screws over 152 mm (6 in) long, and for all other types of bolts and screws of any length.
- **"Lubricated" means coated with a lubricant such as engine oil, or fasteners with phosphate and oil coatings. "Dry" means plain or zinc plated without any lubrication.

Basic instructions

HOW TO MEASURE VOLTAGES IN THE ELECTRONICS SYSTEM

When asked to measure a voltage, the voltage being measured is always at one point with respect to (relative to) the voltage at another point.

Example: To measure the voltage at point A with respect to point B, place one meter probe (typically red in color, and connected to the meter connector labeled "V"). Place the other meter probe (typically black in color, and connected to the meter connector labeled "COM").

If the units of voltage are specified as "volts dc", be sure your meter is set to "dc". If the units of voltage are specified as "volts ac", be sure your meter is set to "ac".

North American automotive electrical systems often use the chassis (metal frame) of the automobile as the return path (often referred to as ground) for electrical current. The electronics system does not use the chassis for a return path, and no voltage measurements should be made with respect to the chassis. All components in the electronics system should be considered to be electrically isolated from the chassis, although at the tractor the electronics system return is connected to the battery negative terminal which is in turn connected to the tractor chassis.

NOTE: On VR air carts with a battery and a hydraulic motor driven alternator, the air cart battery negative terminal is electrically isolated from the air cart chassis.

ELECTRICAL ISOLATION

Two points are electrically isolated when the resistance between them is "infinite" (very large, greater than **10,000,000 ohms**). To verify two points are electrically isolated.

1. Set your meter to measure resistance (usually labeled with the ohm symbol).
2. Hold the two probes apart from each other in the air. The meter must indicate infinite resistance (usually indicated by the infinity symbol or on digital multimeters, "++++" or "OL" for overload).
3. Hold the two probes together. The meter must indicate a very low resistance, less than **1.0 ohms**. The resistance measured will vary depending on what scale the meter is set to.
4. Place one probe on one point and the other probe on the other point. It does not matter which probe is placed on which point when measuring resistance. The meter must indicate infinite resistance as it did in 2 above for the two points to be electrically isolated.

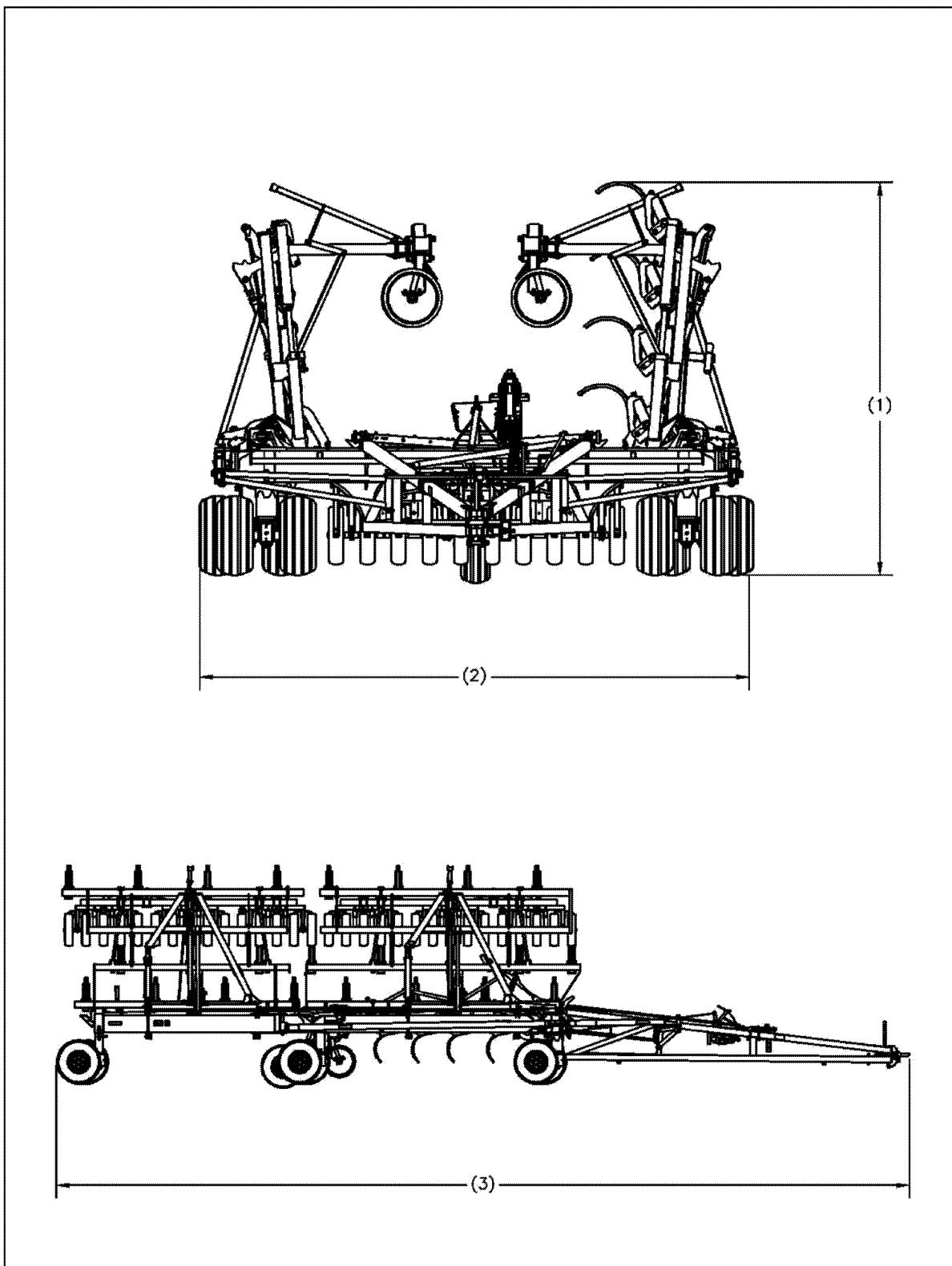
ELECTRICAL CONTINUITY

Two points have electrical continuity when the resistance between them is very small, less than **0.1 ohms** . To verify two points have electrical continuity

1. Set your meter to measure resistance (usually labeled with the ohm symbol).
2. Since we are expecting to measure a resistance of **0 ohms**, set the scale to the lowest available.
3. Hold the two probes apart from each other in the air. The meter must indicate infinite resistance (usually indicated by the infinity symbol or on digital multimeters, "++++" or "OL" for overload).
4. Hold the two probes together. The meter must indicate a very low resistance, less than **1.0 ohms**. Record or memorize this resistance. This is the probe resistance.
5. Place one probe on one point and the other probe on the other point. It does not matter which probe is placed on which point when measuring resistance. Subtract the probe resistance measured in 4 above from the meter reading. If the meter reading minus the probe resistance is less than **0.1 ohms**, the two points have electrical continuity.

RESISTANCE

To measure the resistance between two points.


1. Set your meter to measure resistance (usually labeled with the ohm symbol).
2. Hold the two probes apart from each other in the air. The meter must indicate infinite resistance (usually indicated by the infinity symbol or on digital multimeters, "++++" or "OL" for overload).

INTRODUCTION

3. Hold the two probes together. The meter must indicate a very low resistance, less than **1.0 ohms**. The resistance measured will vary depending on what scale the meter is set to
4. If the expected resistance is less than **20.0 ohms** ohms, go to 6.
5. Place one probe on one point and the other probe on the other point. It does not matter which probe is placed on which point when measuring resistance. Read the resistance indicated in the meter
6. Since we are expecting to measure a resistance less than **20.0 ohms**, set the meter to an appropriate scale, likely the lowest available.
7. Hold the two probes together. The meter must indicate a very low resistance, less than **1.0 ohms**. Record or memorize this resistance. This is the probe resistance.
8. Place one probe on one point and the other probe on the other point. It does not matter which probe is placed on which point when measuring resistance. Subtract the probe resistance measured in 7 above from the meter reading. The meter reading minus the probe resistance is the resistance between the two points.

Dimension

206162C 1
Air Hoe Drill Front and Side View - Transport Position

INTRODUCTION

Air Drill Dimensions

Metric Dimensions (meters)

BASE MACHINE	19 cm Spacing		25.4 cm Spacing		30 cm Spacing	
	# of Shanks	Width of Cut	# of Shanks	Width of Cut	# of Shanks	Width of Cut
18.3 m	96	18.3 m	72	18.3 m	60	18.3 m
21.3 m	N/A	N/A	84	21.3 m	70	21.3 m
BASE MACHINE	Transport Width (2)		Transport Height (1)		Air Drill Length (3) *	
18.3 m	5.4 m		4.1 m		12.3 m	
21.3 m	5.4 m		4.1 m		15.3 m	

Imperial Dimensions (feet)

BASE MACHINE	7.5 in Spacing		10 in Spacing		12 in Spacing	
	# of Shanks	Width of Cut	# of Shanks	Width of Cut	# of Shanks	Width of Cut
60 ft	96	60 ft	72	60 ft	60	60 ft
70 ft	N/A	N/A	84	70 ft	70	70 ft
BASE MACHINE	Transport Width (2)		Transport Height (1)		Air Drill Length (3) *	
60 ft	17 ft 8 in		13 ft 6 in		40 ft 4 in	
70 ft	17 ft 8 in		13 ft 6 in		50 ft 3 in	

* NOTE: Length is the machine length without any field hitches.

Weight

19 cm (7.5 in) Spacing - Implement Weight in Kilograms and Pounds

WIDTH	SHANKS	350 POUND TRIPS		550 POUND TRIPS	
3 1/2 in Steel Press Wheels					
		weight in kg	weight in lb	weight in kg	weight in lb
18.3 m (60 ft)	84	16,200 kg	35,708 lb	15,970 kg	35,206 lb
21.3 m (70 ft)	70	N/A	N/A	N/A	N/A
3 in Rubber Press Wheels					
		weight in kg	weight in lb	weight in kg	weight in lb
18.3 m (60 ft)	84	16,470 kg	36,300 lb	16,200 kg	35,710 lb
21.3 m (70 ft)	70	N/A	N/A	N/A	N/A

Weights listed do not include ground engaging tools or harrows. Weights do not include air packages or hitches.

INTRODUCTION

25.4 cm (10 in) Spacing - Implement Weight in Kilograms and Pounds

WIDTH	SHANKS	350 POUND TRIPS		550 POUND TRIPS	
3 1/2 in Steel Press Wheels					
		weight in kg	weight in lb	weight in kg	weight in lb
18.3 m (60 ft)	72	14,710 kg	32,420 lb	14,535 kg	32,045 lb
21.3 m (70 ft)	84	16,340 kg	36,030 lb	16,145 kg	35,590 lb
4 1/2 in Steel Press Wheels					
		weight in kg	weight in lb	weight in kg	weight in lb
18.3 m (60 ft)	72	14,970 kg	33,000 lb	14,800 kg	32,620 lb
21.3 m (70 ft)	84	15,670 kg	34,540 lb	16,450 kg	36,260 lb
3 in Rubber Press Wheels					
		weight in kg	weight in lb	weight in kg	weight in lb
18.3 m (60 ft)	72	14,878 kg	32,800 lb	14,710 kg	32,430 lb
21.3 m (70 ft)	84	16,556 kg	36,500 lb	16,350 kg	36,040 lb
4 in Rubber Press Wheels					
		weight in kg	weight in lb	weight in kg	weight in lb
18.3 m (60 ft)	72	15,020 kg	33,115 lb	14,850 kg	32,740 lb
21.3 m (70 ft)	84	16,710 kg	36,840 lb	16,510 kg	36,400 lb
5 in Rubber Press Wheels					
		weight in kg	weight in lb	weight in kg	weight in lb
18.3 m (60 ft)	72	15,275 kg	33,670 lb	15,100 kg	33,290 lb
21.3 m (70 ft)	84	17,005 kg	37,485 lb	16,805 kg	37,045 lb
6 1/2 x 15 in Pneumatic Flat Face Press Wheels					
		weight in kg	weight in lb	weight in kg	weight in lb
18.3 m (60 ft)	72	14,530 kg	32,025 lb	14,355 kg	31,646 lb
21.3 m (70 ft)	84	16,160 kg	35,625 lb	15,960 kg	35,184 lb

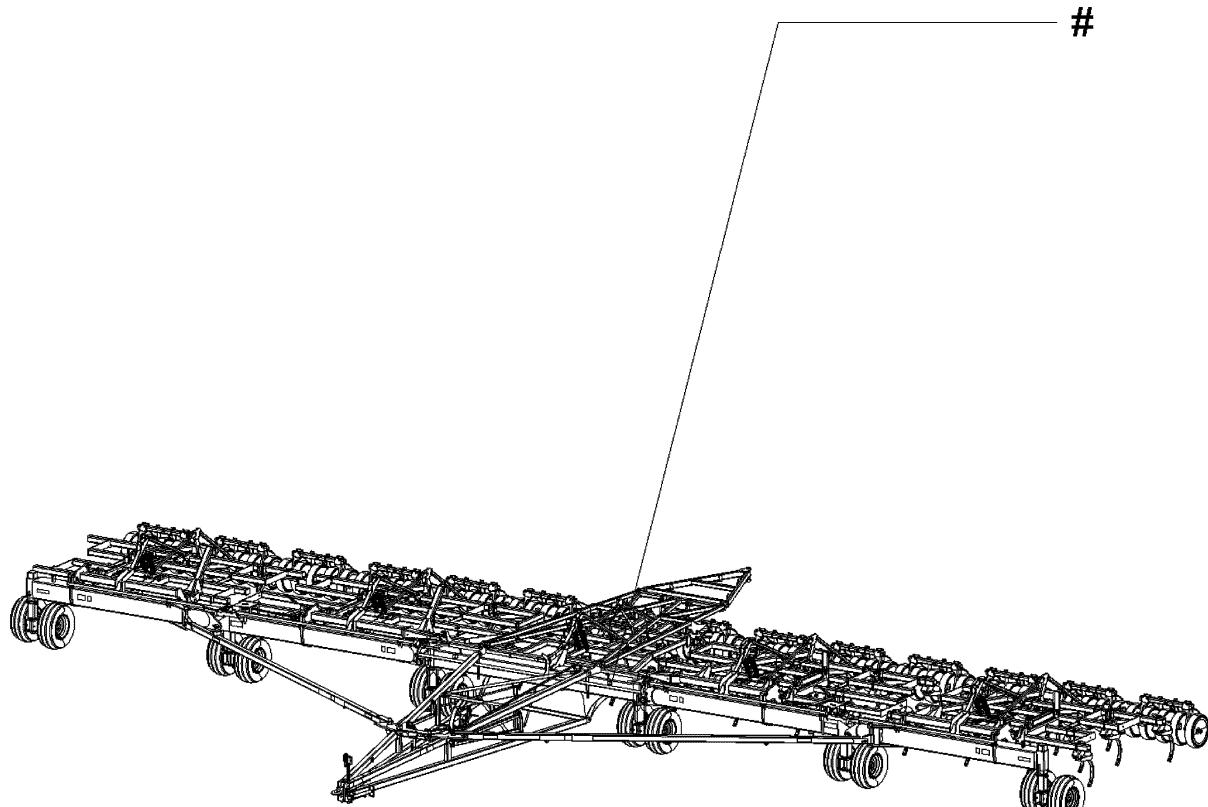
Weights listed do not include ground engaging tools or harrows. Weights do not include air packages or hitches.

INTRODUCTION

30 cm (12 in) Spacing - Implement Weight in Kilograms and Pounds

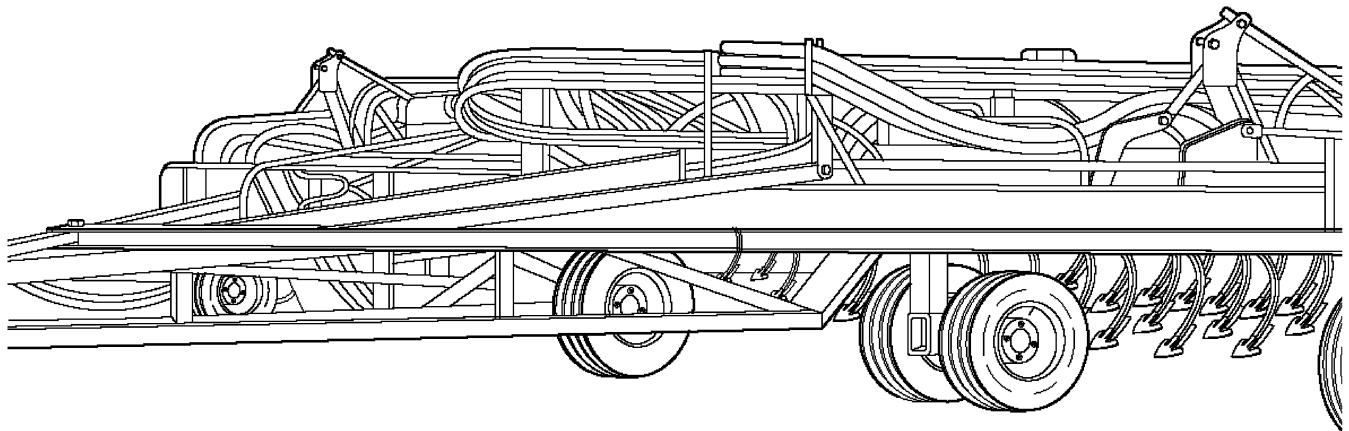

WIDTH	SHANKS	350 POUND TRIPS		550 POUND TRIPS	
3 1/2 in Steel Press Wheels					
		weight in kg	weight in lb	weight in kg	weight in lb
18.3 m (60 ft)	60	13,950 kg	30,745 lb	13,780 kg	30,380 lb
21.3 m (70 ft)	70	15,440 kg	34,037 lb	15,270 kg	33,665 lb
4 1/2 in Steel Press Wheels					
		weight in kg	weight in lb	weight in kg	weight in lb
18.3 m (60 ft)	60	14,170 kg	31,240 lb	14,005 kg	30,875 lb
21.3 m (70 ft)	70	15,700 kg	34,610 lb	15,530 kg	34,240 lb
3 in Rubber Press Wheels					
		weight in kg	weight in lb	weight in kg	weight in lb
18.3 m (60 ft)	60	14,107 kg	31,100 lb	13,925 kg	30,695 lb
21.3 m (70 ft)	70	15,604 kg	34,400 lb	15,435 kg	34,030 lb
4 in Rubber Press Wheels					
		weight in kg	weight in lb	weight in kg	weight in lb
18.3 m (60 ft)	60	14,205 kg	31,320 lb	14,045 kg	30,960 lb
21.3 m (70 ft)	70	15,745 kg	34,710 lb	15,575 kg	34,335 lb
5 in Rubber Press Wheels					
		weight in kg	weight in lb	weight in kg	weight in lb
18.3 m (60 ft)	60	14,420 kg	31,790 lb	14,255 kg	31,425 lb
21.3 m (70 ft)	70	15,990 kg	35,255 lb	15,820 kg	34,880 lb
6 1/2 x 15 in Pneumatic Flat Face Press Wheels					
		weight in kg	weight in lb	weight in kg	weight in lb
18.3 m (60 ft)	60	13,805 kg	30,430 lb	13,640 kg	30,070 lb
21.3 m (70 ft)	70	15,300 kg	33,730 lb	15,130 kg	33,355 lb

Weights listed do not include ground engaging tools or harrows. Weights do not include air packages or hitches.


Product identification

Your machine has a Product Identification Number (PIN) plate. The plate looks like the sample shown. For easy reference, locate the PIN plate at the location shown on the figure for your machine. Record the number on this sheet. When requiring repair parts, take this number to your dealer.

Product identification



PIN 1
Product Identification

flexi[®]coil

REPAIR MANUAL

DISTRIBUTION SYSTEMS

5500 [- Y8S003904]
5500 [Y9S003001 -]

Contents

DISTRIBUTION SYSTEMS - A

LIGHTING SYSTEM.....	A.40.A
5500 [- Y8S003904], 5500 [Y9S003001 -]	
FAULT CODES	A.50.A
5500 [- Y8S003904], 5500 [Y9S003001 -]	

DISTRIBUTION SYSTEMS - A

LIGHTING SYSTEM - 40.A

**5500 [- Y8S003904]
5500 [Y9S003001 -]**

Contents

DISTRIBUTION SYSTEMS - A

LIGHTING SYSTEM - 40.A

FUNCTIONAL DATA

LIGHTING SYSTEM

Static description	3
Electrical schema	6

SERVICE

LIGHTING SYSTEM

Check	7
-------------	---